
Signing and Deploying CAB Based Click
Once Code

Date: 02/06/2007
Author: Jeff Noble

 2

Overview .. 4
Prerequisites .. 4
Preparing the Application ... 5
Turn On Click Once.. 5
Setting the Trust Level.. 6
Setting the Publish Point... 7
Checking and Fixing Application Files... 9
Changing Our Options .. 10
A Word on Developing .. 11
Signing the Manifest?.. 11

Certificates.. 11
Creating your own CA... 12
Creating a template that works! .. 13
Adding our new certificate to the CA... 17

Certificate Files... 18
What the heck is a .cer and a pfx file? .. 18
What is a publisher and who is the root? .. 18
What happens if we are not trusted? .. 20
Generating a Certificate .. 21
Exporting the private key... 23
Exporting the public key .. 30

After all that, what do I do with these stupid files? .. 32
Sign and Deploy... 34
Signing and CAB .. 34
Deploying the Shell... 34
Assigning the Code Signing Certificate... 35
Finally Deploy the application ... 35
Errors .. 39
Test the Deploy... 40
Errors .. 41

Adding the Missing Files... 41
Tools to Manipulate the Manifest .. 41
Fire the Manifest Manager Up... 42
Adding Missing Files ... 42
Finally Adding the Files ... 45
Testing It All Out ... 49

Side by Side Execution... 50
Telling ClickOnce They Are Different .. 50

New Install.. 54
Background .. 54
Creating the Installer .. 54
Setup the Setup.. 55
Adding the System Folder .. 56
Trusted Publishers Installer Class .. 56
Installer Meet Installer Class... 59

 3

Test it out.. 62
Ty-ing It All Together.. 62
Assigning Applications via GPO’s... 62
Providing the application to assign.. 62

 4

Overview

This document will describe the steps needed to build and deploy a Composite
UI Application (CAB) based software package using Click-Once technology. This
document will describe the process as it applies to c# applications. While the
process is similar in VB.net, I will leave it up to you to convert where applicable.

Prerequisites
To use this document you should have the following steps completed.

1. A project build using CAB (written in c#) should be free of build errors.

2. Have access to the ManifestManagerUtility.exe which can be found in the
Click Once Community Resource Kit here:
http://www.gotdotnet.com/codegallery/releases/viewuploads.aspx?id=941
d2228-3bb5-42fd-8004-c08595821170

3. Have access to a Certificate Authority whose root certificate is trusted on
the domain.

4. Have access to a test client system. A virtual machine is fine for this as
long as the operating system is the same as the majority of your users.
You can also use your development machine if you don’t have an extra
PC, but the effects are more explanatory if you actually use at least
VirtualPC or VMWare (both are free).

 5

Preparing the Application
Applications built using CAB do not contain references to their modules. While
this plays well into the loosely coupled architecture of CAB, it does not support
the Click Once notion that all files needed are referenced by the project. To
combat this we will first let Click Once do its thing as far as publishing and
signing goes. After that we will make some changes, and then be ready for the
actual deployment.

Since we will be letting Visual Studio publish, and then we will modify the
published information, it makes sense to publish to somewhere that is not public.
That way we can stage the publish, make our changes and then copy the
completed publish to a live location. This will prevent a user from getting the
changes pushed before we are able to make our needed changes.

To make things more entertaining I am going to describe a scenario where we
want more than one version available of our application. We will prepare a
production release and a development release. Each will live in its own
deployment directory (dev and prod) and will be maintained separately. The
applications will be available offline as well as online. Meaning that if the network
goes down the application can still launch. It will be up to you to provide for this in
your application, but suffice it to say that we will allow for simple offline data
collection.

Turn On Click Once
The first step is to tell Click Once of the permissions you will need for this
application. This is no easy decision as there are many factors that go into each
item. For the purposes of this document, we will be creating a full trust
application. This means that our application will have access to write to the
registry, the hard drive, have network access, etc. While we could restrict the
application to only allow the items it needs, doing so would make this document
extremely large, so we will keep it simple.

 6

Setting the Trust Level

Right click the Properties folder in the shell project and select Open. Then click
the Security Tab.

Put a check in the ‘Enable ClickOnce Security Settings’ check box. Also, select
‘This is a full trust application’. This tells a client computer that the program will
want to do all kind of fun things to the clients computer. The computer in
response will let the user know of the danger. We will later be signing this code
and setting up a trust so that the client computer trusts our code and doesn’t
bother the user.

 7

Setting the Publish Point

The next thing we need to do it setup a publish point. We can do this with a file
share, an IIS virtual on a web server, an FTP, etc. For the purposes of this
document we are going to use a file share. If you would like to use IIS because
you want to hook the http headers and do silly things like that, you can just
change the UNC path that we will use with an http path.

It is important to remember that our publish point is private so that we can make
changes to the deployment before issuing it for public consumption. With that in
mind, lets create a couple of directories. Using the famous Noble Nomenclature
(sometimes called Nobleclature, or lazyclature), I will create two directories as
follows:

1. c:\1Deploy_DEV
2. c:\1Deploy_PROD

The 1 makes these stay at the top of the folder listing and also makes you think
of yourself as number 1 when you type it <grin>.

The next step is to create shares for these. This is where the UNC path stuff
comes into play. I will right click and share these folders as
\\machinename\DeployDEV and \\machinename\DeployPROD.

Now that we have our publish points created, it’s time to tell Visual Studio and
Click Once about the drop locations. We will be working on creating a Click Once
deploy for production first.

Right click the Properties folder in your shell project and select Open. Then
select the Publish tab.

 8

Type in your UNC path into the Publishing Location and then select ‘The
application is available offline as well (launchable from the Start menu)’. I am
selecting this instead of online only, because my application will allow people to
use it in an offline mode. I also don’t like to tie all of my users to a network
resource. Lets say I used a Publish location of
http://myintranet/myapplication/hello.application. If the web server that hosted
this resource were to go down, nobody would be able to launch my application.
Remember that my network is up and running, it’s just that one box that went
down (not that IIS EVER has trouble). For this reason, I use unc paths. I can
have my installation files hosted on a box that is mission critical. If that box goes
down, my application is probably un-useable anyway. In addition to this, I like to
allow for launching even if the network is down. I can collect data in an offline
mode, and then batch import it when the network comes back. This makes me
happy, and this is what I shall do <smile>.

 Your version will start out at 1.0.0.0 and will increment automatically (as long as
the checkbox is checked) with each publish. Notice that mine shows I have
published 4 times already and am ready for publish 1.0.0.5.

 9

Checking and Fixing Application Files

Next we move on to the Application Files Button. Clicking it will reveal a couple of
problems for CAB.

The First problem is the ProfileCatalog.xml file. This file gets incorrectly marked
as a data file. As such it won’t be available to CAB after it deploys. Make sure
you change the publish status to ‘Include’ for this file. I changed all of them to
include, but I really am not sure what the effect of this is as opposed to Include
(Auto). I just don’t trust most things that claim to be automatic. Look at Martin
Gramatica, he used to be called Mr. Automatica and look what happened to him.

The next thing to notice is that in the list of applications, you don’t see ANY of
your CAB modules you worked so hard on. This is because Click Once only
see’s the output files in the project and the project references. This will not work
for us. We will go ahead and leave it this way for now. We will even publish it this
way, but then we will add the missing files (more on that later).

 10

Changing Our Options

After clicking OK we need to click on the Options Button. In this dialog we need
to change the Publisher name and Product name. The product name is the name
that will be displayed on the start menu after this application deploys. It does not
however tell click once that this is a different installation. In other words, just
changing the Product name here and re-deploying will not result in two start
menu icons. The start menu WILL use this name, but ClickOnce will still treat
these builds as if they are the same. Deploying the second time will overwrite the
existing start menu item. We will cover how to avoid this later. I just wanted to
point out that this is the name that goes on the start menu and nothing more.

I also unchecked the Open deployment web page after publish. I don’t like being
spammed by browser windows from Visual Studio.

 11

A Word on Developing

While you develop I recommend using a test certificate. You can even install the
certificate as a trusted publisher if you like. This will allow you to work on the
project without knowing the real certificates password. Once you are ready to
deploy then you can create the real certificate and deploy in a trusted manner.

Signing the Manifest?

Ok, here is where the really confusing stuff happens. This is going to get really
really hard. Did I scare you? Oh well. This stuff is actually quite simple, but it is a
lot to go through. I do promise you that once you go through this a couple times,
you will be able to do everything in this document in a matter of minutes. It just
takes a lot to explain it in detail. I will do my best. The following is an explanation
of how the digital signing works and why we need it. Once you understand that,
then I’ll go through how to do all the wacky junk we just explained. So …. On with
the junk.

Certificates

Most of the articles you will read talk about getting a certificate from a trusted
authority (like Verisign, or Thawte). If you are planning to deploy your application
in your intranet (like I am) and your remote users will have access to your local
network (your remote users VPN into the corporate network) like mine do. Then
you really do not need to purchase your certificates. What you will need is a
Certificate Authority (CA) installed within your domain. You will also need to run
the CA on Windows Server 2003 Enterprise edition. Without Enterprise edition
you will not be able to make the needed templates for use with ClickOnce. I
installed my CA in a VMWare virtual machine but you can use a spare box (I just
didn’t have one readily available). Installing a CA is outside the scope of this
article, but I will give you an abbreviated version that worked for me. Make sure
you check with your Administrator to see if this is the correct setup on your
network. Ok, I warned you! You get to the CA installation from the Add Remove
Programs and click the Add Remove Windows Components button on Windows
Server 2003 Enterprise Edition.

 12

Creating your own CA

We already had a CA on our network so I made this a subordinate CA. Your
administrator will have to make sure that your CA is trusted as a Root

 13

Creating a template that works!

Then you can create a new template for the CA.

Some names have been hidden to protect the innocent. As you can see from the
above, the CA already has a Code Signing template (you may have to add it
manually to the list of available templates). The problem with this one is that the
private key is marked as not exportable. We will need the private key information
to create one of the files we need for ClickOnce. There is no way to edit the Code
Signing template. However, you can create a copy of it and change whatever you
need on the copy. Then you can use that new copy to create what we need. To
do all this mumbo jumbo you will need the Certificate Templates snap-in.

Here is a look at the existing code signing template (ignore the one I blocked out,
it was requested by my employer).

 14

Notice that some of the icons are grayed out. This is because they are not
editable. We can only edit the new type of certificates that we make. So to do
that, just right click the Code Signing template and duplicate it.

 15

This is where we can change the things we need. Duplicating the template opens
up the Properties of a new template dialog box. The first thing to do is change the
name and how long the certificate will be valid.

 16

Then click the Request Handling tab. This is where we tell the template to allow
exporting of the private key.

Then just click ok to add the template.

What we just did was created a certificate template. That means that once we
add this template to our server, you will be able to request a certificate based on
this template. This certificate will then be applied to our manifest, digitally signing
it to prevent tampering. So next we add the certificate to the CA.

 17

Adding our new certificate to the CA

All we have to do is right click our Certificate Templates folder in our CA (not in
the Certificate Templates snap-in, this time it’s back in the actual CA snap-in in
the templates folder). Select Certificate Template to Issue.

In the list provided, select the template that you just created.

Now restart your CA service and you are ready to use the new certificate!

 18

Certificate Files

What the heck is a .cer and a pfx file?

A .cer file is a certificate file. It may or may not contain an exportable private key
(ours will). The pfx file is a private key file we can use in ClickOnce to sign our
manifest. While there is a TON more to tell about certificate files, I want to keep it
simple. People seem to get overwhelmed, so I am going to keep it very simple.
You only need to know that we are going to sign our manifest with the .pfx, and
we are going to use the public key out of our .cer to make our clients trust us as
publishers.

What is a publisher and who is the root?

One of the most common questions I get is, “I don’t understand the whole root
and publisher thing, can you explain it?” In a nutshell, there are three players
involved in a trust situation. Imagine that I am your friend. You trust me implicitly.
If I give you some software and tell you that it is safe to install, then you would
trust me (hopefully). However, if you just met somebody in a back alley and they
told you to install some software would you trust it? How about if that same
person told you they signed it, would you trust it then? The answer should be a
resounding NO! You don’t know that person and you cannot trust that just
because they say it’s ok that it really is. Even though they signed it, who are they
to you? Get it? Now if they gave me the software and I told you yes it’s ok to use,
then you once again could trust it.

This is exactly how all this stuff works. The thing that gets confusing is when you
are the CA, the developer and the client (when you test the application). To keep
things straight, as you do each step you should imagine yourself working for
some other department. The CA is the one you trust. Your Administrator in your
environment has configured your network and all of the computers on it to trust
the CA. This certificate should be visible in the Trusted Root Certificate
Authorities folder in your local client machines certificates snap-in. If it isn’t talk to
your admin and make sure it gets propagated. If you installed a subordinate CA
your users will only need to trust the main CA as long as everything is configured
correctly.

Notice in the Trusted Root Certificate Authorities folder is certificates for Verisign
and other trusted root certificates.

 19

These are your friends in the explanation above. If any root certificates in this list
say software is safe to install, then your computer will trust them. Now, we are a
trusted root as well (well at least the CA is).

 20

What happens if we are not trusted?

We do have the ability to sign our manifest with our Code Signing template that
we created and deploy the files using ClickOnce. The problem is, that if we are
not a Trusted Publisher, the end user will be prompted with a warning:

While this dialog box would normally be ignored by most users, it really should
never be seen. If I want to deploy software within my company, I should be
trusted on the network and on the client machines. We are going though this
portion of the document, to get rid of this warning dialog box. Plus it’s really cool
to see this work as advertised!!

The next thing we want to do is to make ourselves a trusted publisher. That is,
we want to tell our computer, that some developer is trusted by some root
certificate (our CA). We are now the back alley guy who is looking for a trusted
friend to tell everyone on our network that we can be trusted. In Certificates
snap-in under Computer, you can see a folder called Trusted Publishers. We (as
developers) need to be in that folder for windows to trust our install and not warn
us. This is as easy as putting the certificate into the folder, but who is going to do
that? For the sake of keeping it simple, we will do that part manually for this
portion of the article. At the end of this article however, I will describe how to
push this trust out via Group Policy and make this a seamless hands off
operation (with the help of an Administrator friend).

 21

Generating a Certificate

Now to make sense of all that setup we just created. Time to create a few files.
Open up internet explorer and go to your CA. It should be at
http://yourCAserver/certsrv/.

Click Request a Certificate.
Then click Advanced Certificate Request.

Next click Create and submit a request to this CA.

 22

Select the certificate template we created earlier. Make sure the Mark keys as
exportable is selected.

Click the submit button.

 23

You should then see this page:

***If you do not see this page, you may have a CA setup to manually issue
certificates, all you have to do it go into the snap-in for the CA and right click the
certificate in the pending folder, and issue the request. Then go back to the
website, and check the status of an existing request. You will find the certificate
waiting for you.

Click the Install this certificate link.
Your certificate is now installed in your personal certificate store.

We need to get two files from this certificate, a .cer and a .pfx. First for the pfx.

Exporting the private key

Open the certificates snap-in for the current user.

In the right hand pane right click the certificate you just installed and select
Export. The following wizard will display:

 24

Click Next.

 25

We want to export the private key as we will need this later.

Click Next.

 26

Leave everything the same for the export file format page of the wizard.

Click Next

 27

Type and confirm a password for the private key in the next page of the wizard.

Click Next.

 28

Give a path for the location of the saved private key file.

Click Next.

 29

Click Finish. The private key file is now in the specified path.

 30

Exporting the public key

This process is the same as the private key. I will display the exceptions here,
but just follow the Export private key instructions for the most part.

On the Export Private Key page of the wizard, choose No.

 31

On the export file format page of the wizard, select either DER, or Base-64
options as they will give us a file with the .cer extension.

Save the file with a .cer extension.

You now have the two files you need. Although it is a lot to document, once you
understand what you are doing, and have the needed items installed in the CA,
you can request a certificate and extract the needed keys in a minute or two.

 32

After all that, what do I do with these stupid files?

Whew, that was a lot to explain, but hopefully you are with me. Here is a quick
re-cap of what we have accomplished this far. We setup our code for ClickOnce
(more of that is needed now); we installed our CA which is a one time thing. We
created a reusable template for creating a Code Signing certificate with an
exportable private key (.pfx file). Lastly, we exported the public and private keys
from our installed certificate in our store.

The next thing we need to do is to setup our Trusted Publisher on our client
machine. Remember this is where we switch hats. We are now acting as the end
user (client). Copy the .cer file to the client machine. In the client (I am using a
VMWare virtual machine; you can use your workstation if you need to), open the
Certificate store for the computer (snap-in). Right click the Trusted Publisher
folder. Choose All Tasks -> Import.

In the wizard, navigate to the .cer file and finish out the wizard with no other
changes. What we just did, was told the client computer that any software
pushed by the publisher described in the certificate should be trusted. The
certificate is signed by a trusted root because the CA that signed the certificate is
already trusted (we made sure of that before).

To see the certificate, you can double click the certificate (either the .cer file, or
the entry in the certificate store). It will show you the details:

 33

Great! Now we are trusted.

 34

Sign and Deploy

Signing and CAB

We are about to sign the manifest with our certificate. The problem is that since
we are using CAB, the shell project does not contain our smart parts or any other
references for that matter. When deploying a ClickOnce application the
ClickOnce output generated by Visual Studio includes the files and references in
the project being signed and deployed. This means that in a CAB environment
you either have to reference your modules in the shell, or modify the manifest
and re-sign it when you are done. I prefer not to add the references because one
of the benefits of using CAB is that it’s loosely coupled and I want to preserve
that. You can make your own decision. Adding the references is only for the
purpose of telling Visual Studio that you want to include the dlls in your bin
directory and that you want ClickOnce to include the files in your manifest. Again,
we will do it all manually.

Deploying the Shell

Let’s go ahead and deploy the shell. This will not include any modules. We will
add those later. In the shell project, select the Signing tab in the project
properties. In the following diagram, I have a test certificate installed. We will be
replacing this with our Code Signing certificate.

 35

Assigning the Code Signing Certificate

Click on the Select from File button. Navigate to your .pfx file. When prompted,
enter the private key password.

After clicking Ok, you should see your Code Signing certificates information in
the certificate area.

Finally Deploy the application

Ok, now build your project and then to deploy it, either select the Publish tab, or
choose Publish <project> on the Build menu. This will bring up a wizard. After the
first time, you can just click finish right away, but we will go through it here so that
you understand the steps.

 36

This is the location from the publish tab itself, it’s just giving you one last chance
to change your mind. I am using a file share here, but notice that you have
examples of other types of deployment options.

Click Next.

 37

Leave the default and click next.

 38

The main difference is the shortcut on the start menu. This works well for me.
You can choose which ever one you want. Again, this is copied from the Publish
tab.

 39

Ok, here we go!! Click Finish.

Your project will build and then publish to the deployment folder.

Errors

If you get any errors like the following:
Could not find a part of the path 'C:\...\bin\Debug\Shell.publish\Shell_x_x_x_x'.
The easiest way to move on is to just bump the revision number up on the
Publish tab and republish.

 40

Test the Deploy

Now we are going to install the application, remember that this is just the shell.
Go to your client (end user) environment (my VMWare machine). Navigate to the
share (Start -> Run).

In the window that opens you will see something similar to the following:

Double click the Shell.application file. This will launch the click once install. First
you will see the application check the manifest on the server and determine if it
needs to install anything locally.

For us this is the first time, so it will download the program and run it. Hopefully
all goes well up to now. If you notice (or didn’t notice) it did not ask you to ok the
publisher. We are all trusted now!

 41

Errors

If you see errors, you will want to do a couple things:
1. Run the exe in the bin directory. Make sure this an actual ClickOnce

problem and not a bug in your executable.
2. Look in the deployment directory (C:\1DeployPROD\Shell_1_0_0_4).

Compare the files to those in your bin directory. All of the files in the folder
will have a .deploy extension, but the files are unchanged (you could
remove the .deploy extensions to test the .exe).

a. If files are missing, which is likely when using CAB, then you’ve
found the reason for the error. You can either add the files in the
publish tab (application files button). Or you can add them manually
when we add the modules and their dependencies. The important
thing to realize is that the application did deploy and did try to run
(albeit with errors). The ClickOnce and signing portion really did
work.

Adding the Missing Files

Whether you had errors running, or just didn’t see your modules from CAB you
will need to add the missing files. The steps are simple. Just modify the manifest
to add the missing files, and then re-sign the manifest with our certificate.

There are a couple different ways to add files to the manifest. You can use the
tool that comes with .net called Mage. It has flavors for command-line and GUI.
Mine is installed in C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin.
Using this tool has a couple limitations, and I have stumbled upon a better tool.

Tools to Manipulate the Manifest

If you want to know more about the options check out the ClickOnce Community
Resource Kit. It was put together by Brian Noyes. He is an authority on this stuff
(he even wrote the ClickOnce whitepaper for Microsoft). Get the ClickOnce
Community Resource Kit here:
http://www.gotdotnet.com/codegallery/releases/viewuploads.aspx?id=941d2228-
3bb5-42fd-8004-c08595821170

In that kit there is GREAT pdf showing you how to do all kind of things with both
Mage and his tool (which comes with the Resource Kit). My examples will use
Brian’s tool called Manifest Manager Utility.

To continue, please download and compile the Manifest Manager Utility.

 42

Fire the Manifest Manager Up

Before you start, you need to find all of the files you need to deploy. I would
suggest a manual run, because many of the problems I have had with CAB deal
not with ClickOnce, but with missing files. Create a directory and copy all of the
files in the shell bin folder to this new directory, then copy the module dlls and
referenced files from their bin folders to this new directory. When all of the
needed references and files are in there, run the shell.exe from the firectory and
test your application. If it doesn’t work in there, it won’t work when deployed via
ClickOnce. Ok, you’ve been warned!!

We will go through two different iterations to keep things clear. The first example
will simply add the files we need to the manifest and sign it. The second example
will give us the ability to run side-by-side versions of the same ClickOnce
deployed application.

Adding Missing Files

Run the Manifest Manager Utility. You will see the following screen:

Click Open.

 43

In the Open File dialog box, choose the deployment manifest file. This is the file
that has a .application extension, it is in the root deployment folder and does
NOT contain the version in the name. For my example it looks like this:

Click Open.

 44

You will now see the files contained in your manifest. All we have to do is click
the add button:

When using CAB, all of your files should be in the projects bin folder (especially if
you used the Guidance package to create your projects (I do). If not, don’t worry,
you will just have to get your files from many locations (each modules bin folder).

 45

Finally Adding the Files

I will navigate to my bin folder and select the missing files.

I can’t forget CSLA (thanks Rocky)!!

 46

Don’t forget this one if you use Enterprise Library:

Click Ok.

 47

Next you are provided with a destination location dialog:

Select the location where you want these newly added files to live. I prefer to
keep them with the other files already in the manifest for the version that I am
about to push, so I will put them here:

Click Ok.

 48

Now the list of files should match the manual run test you did earlier. If everything
is ok, then all we need to do is save and sign the manifest. So just click the Save
button. You will see the following dialog:

• Point the path to your .pfx file that we created so long ago.

• Type the password for the .pfx file.

• Click Save and Sign.

That’s it!

 49

Testing It All Out

Go to your client machine environment and run the application from your share.
Mine looks like this:
\\jnoble\DeployPROD\Shell.application

You should see:

Then this:

(If you saw a dialog asking you anything, then your certificate is not trusted).

Then the application should run.

Viola!

 50

Side by Side Execution

Earlier I spoke of running different version side-by-side. What I mean by this is I
want a development version (beta) and a production version (RTM) installed on
my machine. If we don’t do anything and just deploy two versions to two different
folders, the client will assume that they are the same version and overwrite the
last one each time you run. This is bad, especially if you want icons on the start
menu for each of them (offline mode of ClickOnce).

Telling ClickOnce They Are Different

Remember back in the Setting a Publishing Point section of this document that
we setup two deploy folders? Our folders were for production and development.
We have only been using production up until now.

We will leave the production one alone since we already have it deploying via
ClickOnce and it’s good to go. What we really have to do it tell ClickOnce to treat
our development version as if it’s a totally separate application. Here is how we
do this:

1. Set the deployment location.
2. Set the name to development in ClickOnce.
3. Rename the manifest file.
4. Change the Application Identity in the deployment manifest.
5. Change the Deployment Provider in the deployment manifest.

Sounds tricky huh? Well it isn’t. As a matter of fact only two changes are in
Visual Studio. The rest is in the Manifest Manager Utility.

 51

So, go back to the shell and open the Publish page of the project properties.
Step 1: Set the deployment location to our development share.

 52

Step 2: Click the Options Button. Change the product name to show a new
name. This is the name that will show up on the Start Menu.

Click Ok.

Build the application.

Publish the application.

 53

Step 3: In Windows Explorer rename the manifest file to a unique name, but
remember the name. I used this:

Now fire up the Manifest Manager and open your new manifest. (Shell-
DEV.application in my case).

Step 4 & 5: Change the name in the Application Identity and the Deployment
Provider.

Now just add the missing files and sign and save the manifest (shown in the
previous example labeled Finally Adding the Files).

 54

New Install

Background

Ok, so we know what to do and are all set, but how are we going to push out this
trusted publisher to the machines on our network? While I am sure that there are
many creative ways to do this. I came up with one that works for me. I hope it
works out well for you too.

All I really wanted to do was to install my trusted certificate in a client machine.
Later I would add a desktop icon to the desktop, but I’ll leave that for another
blog article. I decided to have a friend create a group policy in Active Directory
and that we would push an installer.msi onto the client machines on our network.
All I had to do was create an installer that would install our certificate (.cer file)
into the trusted publishers store on the client machines and the group policy
would push the software to the client and run the installer. Perfect! But how do
we do that…. After much research (and trial and error). We came up with the
following:

Creating the Installer

In Visual Studio add a new Setup Project (under Other Project Types, Setup and
Deployment).

 55

Setup the Setup

Now we have to add the certificate file to the installer.

Select your .cer file in the Add Files dialog.

We will place the .cer file in the System32 folder on the clients machine because
I don’t want them to mess with it and most people don’t even look in there. If they
do find it, it’s fine because it’s just a public key file. You can’t sign with it.

 56

Adding the System Folder

We have to add the System folder to our installer. Double click your .cer file in
the project and then right click the File System on Target Machine icon.

Now select the Application Folder and drag the certificate icon from the
Application folder to the System Folder:

So that takes care of deploying the certificate to the client. Now all we have to do
is have the installer put it in the trusted publishers store.

Trusted Publishers Installer Class

Add an installer class to your project

 57

Now delete the class1.cs and add an installer class to the project.

 58

Next add a committed event to the class. This will get called by the installer when
it enters the commit phase of installation:

Add the following code to the Committed event handler:

using System.Security.Cryptography.X509Certificates;

private void ApplicationInstallerHelper_Committed(object sender,
InstallEventArgs e)
{

X509Certificate2 certificate = new
X509Certificate2(Environment.GetFolderPath(Environment.SpecialFol
der.System) + @"\MyCompanyApplication.cer");

X509Store trustedPublisherStore = new
X509Store(StoreName.TrustedPublisher,
StoreLocation.LocalMachine);
try
{

trustedPublisherStore.Open(OpenFlags.ReadWrite);
 trustedPublisherStore.Add(certificate);

}
catch (InstallException ex)
{

 // write to eventlog here.
}
finally
{

trustedPublisherStore.Close();
}

}

This code creates a new certificate object and loads our certificate from the file. I

use the Environment.GetFolderPath() function to get the actual path of the
system32 folder on the client machine.

 59

Next I create a Certificate Store object and set it to the Trusted Publisher and
Local Machine (as opposed to the user scope). This will install in the proper
place for trusted publishers on the client machine.
Finally I just open the store, add the certificate and close the store.

Installer Meet Installer Class

We have all that we need to work except there is no communication setup
between the installer class and the installer. To make this work it takes two steps.

1. Add the installer class output to the installer project.
2. Add custom events to the installer project so that each phase of the install

will notify our installer class. (We have code in the committed event that
our class will react to).

First add the installer class output to the installer project.

 60

Select the installer class:

Make sure primary output is selected.

Next right click the application installer project and select Custom Actions from
the View menu.

Now right click each folder in the custom actions and add a Custom Action

 61

Select the Application Folder select the Primary output from your Installer Class
and click Ok.

Do this for each folder. You should be left with the following:

*We only really care about the Commit Action, but I like to add these because if I
ever need to react to different events in my installer class, it’s all hooked up for
me.

That’s it!

 62

Test it out

Now compile the Application installer and you can run the .msi file it creates on
your client to automatically install the certificate in the Trusted Publisher store.

Once you verify that it works (just check the snap-in to see your certificate in the
Computer Store’s Trusted Publisher folder). Then we can give the installer to the
group policy. The group policy will then push this out and run it for us.

Ty-ing It All Together
The rest of this article was written by Ty Ryan. Ty is a Systems Administrator and
VMWare expert. He enjoys long walks on the beach and quiet evenings with his
laptop.

Here are his instructions for adding this .msi to Active Directory Group Policy.

Assigning Applications via GPO’s

In this document we are going to discuss how to create Group Policy Objects in
order to publish or assign applications create by OneClick. Only use this
technique to deploy certain types of applications. Specifically, you can install
Windows Installer packages (.MSI files), Transform Files (.MST files), and patch
files (.MSP files).

Providing the application to assign

• The very first step is to create an MSI which will be pushed via Group
Policies Objects.

• To create, manage, backup, import, or report group policy settings I would
suggest using Microsoft’s GPMC (Group Policy Management Console)
which provides a UI to better manage all GPO’s.

• You can go directly to Microsoft’s site to get GPMC by clicking here and if
you would like more information on managing group policies, follow this
link.

• To create your group policy right-click on the Active Directory OU you wish
to apply or test it and click Create and Link a GPO Here…

 63

• Now, provide a name for your GPO and click OK.

• Go ahead and right-click on the new GPO and click Edit.

• You will now be able to modify the settings necessary to install ClickOnce

applications remotely.

• Click on the “+” of Software Settings under User Configuration, then right-
click on Software installation, New, Package…

 64

• Select Assigned to install the application the next time the user logs into
Windows. More info about the difference between Published or Assigned
applications can be found here. Be sure that the application to be
assigned is in a centrally located share easily accessible by domain
controllers and users.

• Right-click on the newly created software installation assignment and click
Properties.

 65

• On the second tab, Deployment, be sure to select Install this application at
Logon and then click OK.

 66

• If the application to be installed requires Local Administrator privileges for
a successful deployment, then elevated privileges will have to be enabled
within the GPO used to assign the application at next logon. This can be
accomplished by enabling Always install with elevated privileges located
under Computer and User Configuration, Administrative Templates,
Windows Components, MSI Installer.

